北京最好白癜风医院哪家好 http://m.39.net/pf/a_4323074.html9微生物菜单一切都始于蚊子咬下的一小口。一只蚊子落在人的手臂上,把口器刺入肉里开始吸吮。当血液从人体涌入蚊子体内时,微小的寄生虫则沿着相反方向前进。它们是丝状线虫的幼虫。这些细小的蠕虫在人体的血液中游动,并钻入腿和生殖器的淋巴结中。在接下去的一年里,它们会发育成熟,并相互交配,每天产下成千上万条的幼虫。医生可以透过超声波扫描仪看到它们在蠕动,被感染的人自己却看不出来,尽管体内生存着数百万条寄生虫,但是仍然没有表现出任何症状。最终,这一切都会改变。蠕虫死亡后会引发炎症,阻断淋巴液流动,使其积留在皮肤下。患者的四肢和腹股沟会肿胀到不成比例,大腿会变得有躯干那么粗,阴囊肿得有脑袋那么大。他没法工作,能站起来已经足够幸运。他将拖着畸形的身体,在社会的异样目光中度过余生。这个人可能是坦桑尼亚的农民,印度尼西亚的渔民或印度的牧牛人。不管是谁,他都是全球数百万淋巴丝虫病患者中的一位。这种疾病在热带地区都有发现,又名象皮病,因为奇异的肿胀会让患者变得像大象一样。罪魁祸首是三种线虫:马来丝虫(Brugiamalayi)、帝汶丝虫(Brugiatimori),以及最主要的班氏丝虫(Wuchereriabancrofti)。另一种相关物种是盘尾丝虫(Onchocercavolvulus),它会引起另一种相关病症:盘尾丝虫病。该疾病通过虱子而不是蚊子传播,并能绕开淋巴结,进入更深处的组织。在那里,雌性盘尾丝虫可以长到80厘米长,紧紧地嵌在肌肉的纤维蜂窝状组织中。它们释放的幼虫会迁移到皮肤,引起令人难以忍受的瘙痒;或者进入眼睛,破坏视网膜和视神经。这就是为什么盘尾丝虫病还有一个简单的名称,河盲症(riverblindness)。这两种疾病统称为丝虫病,是全世界传播最广的疾病:超过1.5亿人患有其中一种丝虫病,另有15亿人面临患病风险。1人们至今还没有找到治疗方式。有些药物可以通过杀死线虫的幼虫来控制症状,但面对耐受度极高的成虫几乎无效。这些物种可以活几十年——对线虫而言已经非常长了——受感染的人必须放弃工作,定期接受治疗。“在所有热带疾病中,这两种摧毁力度最大。”马克·泰勒(MarkTaylor)说道。他是一名身着笔挺西装、满头银发的寄生虫学家。泰勒于年开始研究丝虫病时,最令他好奇的是这种病的严重程度。许多人都会感染寄生的线虫,但表现出的症状通常是良性的。为什么丝虫病造成的炎症会严重到让人失去活动能力?原来它们有帮凶,而且是我们“熟悉”的伙伴。20世纪70年代,研究人员在显微镜下观察这些蠕虫,注意到它们内部有类似细菌的结构。2此后,人们都没有往微生物方面想,直到20世纪90年代,它们被鉴定为沃尔巴克氏体,就是那种已经把自己的基因组植入夏威夷果蝇的基因组中、杀死雄性幻紫斑蛱蝶,并且存在于全世界2/3昆虫体内的细菌。与昆虫体内的对应物相比,线虫体内的沃尔巴克氏体是一个收缩的退化版本。它丢弃了自己1/3的基因组,永久地依附在宿主身上。反之,宿主也离不开它。具体原因尚不清楚,但没有这种共生体的话,线虫便不能完成它们的生命周期,也无法导致严重的疾病。线虫死后,会把自己的沃尔巴克氏体释放到感染者体内。这些细菌不能感染人类细胞,但是会引发剧烈的免疫反应,与线虫本身引起的反应不同。根据泰勒的说法,这是同时拮抗蠕虫以及共生体的两种免疫反应的结合,进而导致了丝虫病的剧烈症状。不幸的是,这意味着杀死线虫反而会恶化疾病,因为它们濒临死亡时会挣扎着释放出所有的沃尔巴克氏体。“然后你会迅速长出巨大的结节,阴囊也会发炎,”泰勒满脸严肃,“你绝对不想倒这个霉。慢慢杀死线虫是更好的选择,但很难想象该如何用抗线虫的药物做到这一点。”还有另一个选择。为什么不干脆忽略线虫,直接针对沃尔巴克氏体呢?泰勒和其他研究者在实验中发现,对线虫而言,用抗生素清除细菌是致命的。幼虫无法成熟,成虫会失去繁殖力;一段时间后,它们的细胞开始自我毁灭。身处这种伙伴关系之中,哪一方都不可能选择“分手”,因为如果共生关系断裂,双方都会死亡。这个过程长达18个月,但缓慢的死亡也还是死亡。而且,由于这些线虫没有沃尔巴克氏体可以释放,所以人类消灭线虫后不会导致疾病恶化。20世纪90年代,泰勒和同事把这些想法付诸临床试用。他们想试验是否可以使用一种名为多西环素(doxycycline)的抗生素,来消除丝虫病患者身上的沃尔巴克氏体。一个实验小组在加纳某个村子的河盲症患者身上试验了该药,另一组则在坦桑尼亚的淋巴丝虫病患者身上试验。两个试验都成功了。在加纳,多西环素让雌线虫无法繁殖;在坦桑尼亚,抗生素消灭的是幼虫。3这两例地点试验中有大约3/4的志愿者,其体内的线虫成虫被杀死,且没有引起任何灾难性的免疫反应。这是一则大新闻。“有史以来,人类第一次治愈了丝虫病患者,”泰勒说道,“我们无法用标准药物做到这一点。”4但是,多西环素并不是万能神药。孕妇不能服用,孩子也不能服用;它的药效发挥得很慢,患者必须坚持服用长达多个星期的好几个疗程;在农村和一些偏远社区,要获得整个疗程的药物十分困难,也很难说服患者坚持。作为对付线虫病的武器,多西环素还不错。但泰勒认为,他能做得更好。年,他成立了一个名为A·WOL〔即“反沃尔巴克氏体联盟”(Anti-WolbachiaConsortium)的缩写〕的国际团队。在比尔及梅琳达·盖茨基金令提供的2,万美元的资助支持下,他们把目标定为寻找针对线虫沃尔巴克氏体的新药物,用于杀死线虫。5他们从数千种备选的化学物质中筛选出了一种很有希望的化学物质:米诺环素(minocycline)。实验室测试证明,它比多西环素的有效性还高50%。研究团队立即把该药物投入加纳和喀麦隆的试验。米诺环素有其缺陷:孩子和孕妇仍然无法服用,价格也比多西环素贵几倍。不过A·WOL团队在此期间又筛选了另外60,种化合物,并确定了几十个更有前途的候选。与此同时,泰勒发现,丝虫线虫和沃尔巴克氏体之间的伙伴关系或许比看上去的更不稳定。他发现,当线虫理应更需要沃尔巴克氏体、沃尔巴克氏体的数量也因此开始上升时,线虫却会将其视为入侵者,并试图摧毁它们。6泰勒解释道:“线虫会认为沃尔巴克氏体是一种病原体。”线虫需要细菌,但如果沃尔巴克氏体不受控制地生长,可能会变成一种共生肿瘤,从而伤害宿主。所以,线虫必须把它们的数量控制在一定范围内。因此,即使这是一个“你死了我也没法活着”的紧密联盟,其中仍有冲突暗涌。在泰勒眼中,这暗藏了可能的治疗手段。他一直在寻找杀死沃尔巴克氏体的药物,而线虫本身已经演化出了杀死它们的方法。如果A·WOL团队可以找到激发线虫体内“控制程序”的化学物质,他们便可以触发宿主和共生体之间潜在的紧张关系,使其彻底演变成一场战争,诱导线虫走上“自毁”之路。这个雄心勃勃的想法是一场豪赌。如果泰勒可以打破这个已经存在了一亿年的共生关系,他便可以改善全球1.5亿人的健康。我们已经看到,微生物组能屈能伸。它可以随着每一次触摸、每一次寄生物的侵入、每一剂药物,甚至单纯随着时间的推移而改变。它是一个动态的实体,会增大也会消失,还会不断地形塑再形塑。这种灵活性是微生物与其宿主之间许多相互作用的基础。这意味着共生可以通过积极的方式引导改变,因为新的微生物合作伙伴能够为宿主提供新的基因、能力和演化机会。这也意味着,伙伴关系可能以消极的方式发生改变,失调的菌群或缺失的微生物会导致疾病。这还意味着,合作伙伴关系也可以依照我们选择的方式刻意地加以改变。早在年,西奥多·罗斯伯里就认识到这一点。他写道,人类能够操纵原生的微生物,“就像为了人类的利益改造环境一样”。我们应该接受它们作为我们生活中很自然的一部分,但这种接受“不一定是被动和听其摆布的”。7从那时到现在已过去了50年之久,我们再也见不到“被动”和“听其摆布”的姿态。今天的微生物学家明白,他们正在改写微生物与动物宿主之间的关系:从线虫到蚊子,再到我们自己。泰勒正致力于清除工作:他们计划使线虫失去共生关系,共同消灭细菌和寄主,从而拯救那些饱受疾病折磨的患者。而另一些想要操纵微生物组的人,则试图把微生物引入宿主体内,从而重新恢复遭到破坏的生态系统,甚至建立全新的共生关系。他们正在开发益生菌“鸡尾酒疗法”,我们可以使用这些配方来治疗或预防疾病,把喂养微生物的营养物质打包,甚至把一个人身上的整个微生物菌群移植到另一个人身上。当人们明白微生物不是动物的敌人,而是整个动物王国的基础后,医学就会大变样。是时候与这种思维告别了:把微生物与我们的关系比喻成战争,认为人类战士应该不计代价地清除细菌。也许,温和、微妙的园艺劳作更适合类比人类对共生关系的新认知:我们确实必须拔除杂草,但也要培养肥沃的土壤,洁净空气,栽种更愉悦视觉的植物。这一认知可能不够直观,不仅仅因为“益生菌”的提法对许多人来说还算新鲜,还因为这是反直觉的——竟然这么多医疗保健手段都要依赖同样的基本思路。得了维生素C缺乏病?缺乏维生素C要多吃水果。得了流感?如果是病毒捣乱,你就需要服用药物,把它从你的呼吸系统中清除出去。添加缺乏的,除去不需要的,这些简单的加减逻辑驱动了许多现代的医学思想。相比之下,微生物组的运作逻辑更复杂,因为它们涉及一张不断变化的巨大网络,网络内部相互联结、相互作用。控制微生物组仿佛运行一整个世界,听着就很困难。请记住,微生物菌群具有天然的弹性:被“击中”后会反弹。它们也是不可预测的:如果你改变、调整它们,最终结果可能一发不可收拾。添加一个所谓“有益”的微生物,很可能会挤掉我们同样依赖着的另一些微生物;而丢失一个据说“有害”的微生物,可能会让更糟糕的机会主义者趁机取而代之。这就是为什么塑造整个微生物世界的尝试至今都鲜获成功,令人费解的挫折却频频遭遇。我们在前面的章节中看到,修复微生物组不像用抗生素去除“坏细菌”那么简单。而我们将在本章中看到,添加“好细菌”也没那么简单。21世纪是蛙类爱好者的噩梦,世界各地的两栖动物都在迅速消失。面对现状,最乐观的自然保护者都不禁皱眉。全世界1/3的两栖动物濒临灭绝。而导致这种局面的原因,几乎所有的野生动物都在面临:栖息地丧失、污染、气候变化。但是,除此之外,两栖动物同时还为自己独有的死对头所困扰:一种对它们来说如末日降临般的真菌,蛙壶菌(Batrachochytriumdendrobatidis)。这是一种可怕的蛙类杀手,能使受害蛙的皮肤变厚,阻止它们吸收钠盐、钾盐等,并引发类似于心脏病的疾病。蛙壶菌发现于20世纪90年代末,自那之后已扩散至除南极洲以外的六大洲,任何有两栖动物的地方都有它们的身影;而一旦抵达,该地的两栖动物就会消失。这种真菌可以在数周内摧毁整个种群,并的确已经让几十个物种步入演化史的尘埃。尖鼻湍蛙(sharp-snouteddayfrog)可能已经灭绝,胃育蛙也没了,哥斯达黎加的金蟾蜍所剩无几,其他数百种蛙类也已经暴露在这一威胁之下。完全有理由把蛙壶菌定性为“记录在案的最糟糕的脊椎动物传染病”。8包括青蛙、蟾蜍、蝾螈、蚓螈在内,两栖动物无一幸免。如果出现一种能杀死每一种哺乳动物的新真菌,每条狗、每只海豚、每头大象、每只蝙蝠和每个人一定会陷入恐慌。而研究两栖类的生物学家,的确已经陷入恐慌。蛙壶菌预示了许多即将发生之事。年,科学家描述了另一种与它相关的真菌,蝾螈壶菌(B.salamandrivorans)攻击了欧洲和北美的蝾螈和瘰螈。自年以来,另一种真菌已经横扫北美洲的蝙蝠种群:它会导致一种致命的白鼻综合征(whitenosesyndrome),在蝙蝠洞内留下了数以百万计的尸体。几十年来,珊瑚不断遭受一波又一波传染病的侵袭。9新的野生动物传染病出现得越来越快,而人类至少需要承担部分责任。我们的飞机、船只和双脚正以前所未有的速度把病原体散播至世界各地,在新宿主缓慢适应之前就已经把它们摧毁。蛙壶菌的兴起就是最好的例子。它的确有毒,也的确会抑制两栖动物的免疫系统。但它仍然是一种真菌而已,而两栖动物已经与真菌周旋了大约3.7亿年。这并不是它们第一个需要驾驭的对象,但驾驭过程之所以异常艰难,是因为两栖动物的适应能力本身已经被气候变化、入侵捕食者和环境污染削弱。此时,再加给它们一种具有破坏性且能快速传播的疾病,未来无疑骤然渺茫。但两栖专家里德·哈里斯(ReidHarris)还抱有希望。哈里斯找到了一种可能可以保护这些动物免受真菌敌人攻击的方式。21世纪初,他发现两种来自美国东部的身体蜷曲的小蝾螈,红背蝾螈和四趾蝾螈,它们身上覆盖着富含抗真菌化学物质的混合物。10这些物质并不是动物自己制造的,而是细菌在它们的皮肤表面生成的。该混合物或许有助于保护蝾螈的卵,使其免受在潮湿地下巢穴繁殖的真菌的侵扰。正如哈里斯后来发现,这些物质也可以阻止蛙壶菌生长。他认为,这也许解释了为什么一些幸运的两栖动物似乎可以抵抗致命的真菌:其皮肤表面的微生物打造了一副“共生盾”。他设想,这些微生物或许可以帮助保存两栖类中越来越稀少的脆弱物种。在美国的另一边,万思·弗雷登堡(VanceVredenburg)也怀有同样的希望。他一直在研究加利福尼亚州内华达山脉的黄腿山蛙,但蛙壶菌的入侵让他沮丧不已。“这令人难以置信,”他说,“前一刻真菌还完全不存在,后一刻就消灭了整片流域的蛙。”它们一只接一只地从好几十个地点消失。但并非所有地方的状况都是如此。在康纳斯山(MountConness)的一个高山湖泊中,黄腿山蛙虽然感染了蛙壶菌,但仍然活蹦乱跳。蛙壶菌通常会用成千上万的孢子淹没宿主,但每只山蛙只携带了几十个孢子。这些致命真菌所到的湖泊都漂满了浮尸,但是在康纳斯,它们充其量只产生了一起轻微的滋扰。在这一处以及另外几个地方,有什么东西在抵抗蛙壶菌的进军。弗雷登堡听说哈里斯的实验后突然明白了什么。他擦拭了黄腿山蛙的皮肤表面,证实其中的确携带了与哈里斯在蝾螈中观察到的相同的抗真菌细菌。其中一种细菌保护力极强,颜色也很鲜明,整体表现十分突出:呈现出一种妖媚的黑紫色,透着一种暗黑之美。这是深蓝紫色杆菌(Janthinobacteriumlividum),许多人称它为J-liv,我们暂且称它为蓝紫菌吧。11在实验室测试中,弗雷登堡和哈里斯都证明,蓝紫菌确实可以保护幼蛙免受蛙壶菌侵扰。但它是如何做到的呢?是通过制造抗生素直接杀死真菌?还是刺激山蛙自身的免疫系统?或是重塑山蛙原生的微生物组?又或只是占据了皮肤表面,从物理层面防止真菌吸附?既然这种真菌这么有用,为什么只在一些山蛙身上发现了它们,其他山蛙身上却没有呢?为什么它们即使存在,数量也很少?“如果能研究清楚每一处细节,当然再好不过,但我们没有时间了。”弗雷登堡说道,“再拖下去,山蛙会就此灭绝。我们面临的是一次真正重大的危机。”先不管细节了。关键是,至少在设置好的实验室条件下,这种细菌是管用的。那么,在野外呢?当时,蛙壶菌正在内华达山脉快速蔓延,每年推进约米。绘制出扩散路线后,弗雷登堡预测,蛙壶菌接下来将攻击海拔约为3,米的杜西流域(DusyBasin),成千上万只黄腿山蛙对即将遭遇的厄运毫不知情。这是考验蓝紫菌能力的完美地点。年,弗雷登堡和他的团队登上了杜西流域,抓住了能找到的每只青蛙。他们在一只黄腿山蛙的皮肤上发现了蓝紫菌,取样后再培养成了一大簇。然后,它们让捕获到的其他黄腿山蛙在这种“菌汤”里洗了个澡,另一些则留在装着池塘水的容器中。几个小时后,他们重新放生了所有的黄腿山蛙,让它们直面真菌的洗礼。“结果惊人。”弗雷登堡说。正如他预测的,到了夏天,蛙壶菌如期而至。真菌对只泡过池塘水的青蛙施加一贯的“酷刑”:它们身负的几十个孢子增多到成千上万个,黄腿山蛙也成了一具躯壳。但在蓝紫菌中浸泡过的青蛙,数量激增的孢子不仅早早涨到了趋于稳定的水平,甚至还经常出现逆转。一年后,大约有39%的黄腿山蛙还活着,而它们的同伴全部死去。这次试验奏效了。弗雷登堡的团队成功地用一种微生物保护了脆弱的野生蛙群,确立了蓝紫菌作为益生菌的地位。益生菌通常与酸奶和补充剂联系在一起,其实,这个词适用于任何可以改善宿主健康的微生物。但是,这种方法需要穷尽所有的个体,而动物保护者并不能抓住所有受到蛙壶菌威胁的两栖动物,也因而无法为它们接种。作为替代方案,哈里斯正在考虑在土壤中播种益生菌,以便让它们自动接种到青蛙或蝾螈身上。或者圈养一些受威胁的蛙类,在实验室接种,然后把这个群体释放到自然中。“有很多可行的方法,”弗雷登堡表示,“但不能一击致命。就像任何复杂的问题一样,我们不能指望总是只有一个赢家。”现实确实如此。哈里斯以前的学生马修·贝克尔(MatthewBecker)发现,同样的方法,在捕获的巴拿马金蛙(即泽氏斑蟾)身上却完全失败。这种与大黄蜂体色相似的蛙,已经永久地成了黄黑色的鬼魂。因为蛙壶菌的寄生,野生的巴拿马金蛙已经灭绝,现在只有在动物园和水族馆才能瞥见它们的踪影。而只要蛙壶菌存在,就没法把它们重新释放回巴拿马的野生环境中。虽然蓝紫菌首先给人们带来了希望,但在这儿却帮不上什么忙。12也许这种情况并非无法预见。我们已经看到,哪怕是密切相关的动物,也可以携带非常不同的微生物菌群。没有理由假定在一个种群中繁殖的细菌,也会在另一个种群上成功繁殖,或者会有一种普遍的益生菌能保护所有的两栖动物。蓝紫菌可能可以在美国的蝾螈和黄腿山蛙上生存,但它并非原产于巴拿马,没有和金蛙共同演化的历史。这么说显得有些事后诸葛亮,但把美国的微生物用在巴拿马的金蛙上,似乎过于乐观了,甚至还有点帝国主义倾向。而无畏的贝克尔决定前往巴拿马,寻找一种更好的益生菌。他研究了和金蛙最接近的几个物种的表皮微生物组,发现几种本地的细菌能够阻止蛙壶菌生长,至少在培养皿中是这样表现的。不幸的是,这些本地的微生物都无法定植在金蛙身上,在真实条件下也无法对抗蛙壶菌。不过,还是有一丝希望闪过:出乎意料的是,在贝克尔的实验中,有五只金蛙能够自然地抵抗蛙壶菌。它们皮肤上的微生物不同于那些死掉的青蛙,而贝克尔现在正试图在这些菌群内鉴定出能发挥保护作用的细菌。哈里斯也正在两栖动物的天堂马达加斯加开展类似的工作,蛙壶菌才刚刚开始入侵这里。他试图找到一种本地的微生物,人为地把它添加到两栖类皮肤上,之后可以抵抗蛙壶菌。贝克尔和哈里斯并不试图创造新的共生关系,或是把细菌从世界的一处引到另一处。“我们只是在为局部出现的微生物扩大覆盖范围。”哈里斯解释道。即使确定了有用的细菌,还是要解决如何让这些细菌黏在青蛙皮肤上。简单的浸泡可能不够,时间点可能也很重要:因为从蝌蚪到青蛙的转变过程中,它们会清除皮肤上所有的微生物,就像大火烧过森林一般。变态期创造了一个必须重新定植的贫瘠世界。对动物而言,这是最危险的时候,但也可能是添加益生菌的完美时间点。也许在这个时候,与融入固定的、状态平稳的微生物群相比,外来的微生物可能更容易融入处于不稳定、重组状态的微生物菌群。其他细节可能也很重要。那些已经存在于各种两栖动物皮肤上的微生物又会如何表现?它们会阻碍,还是补给刚来的益生菌?宿主的免疫系统也是个问题:它会促进微生物菌群在皮肤上定植,还是会纠正它们朝向另一个状态发展?事实证明,细节确实很重要。13它们可以决定事情的成败,生存或灭绝只有一线之隔。而它们在蛙类皮肤上的重要性,与在人类肠道中的不相上下。益生菌翻译成英语是probiotic,意为“为生命好”,在语源和意思上都刚好与抗生素(antibiotic)相反。抗生素被制造出来,是为了除去我们体内的微生物,而益生菌意味着有意地添加它们。20世纪初,俄罗斯的埃黎耶·梅奇尼科夫就是第一批支持这一想法的其中一位科学家;他喝了几十年酸奶,努力摄取乳酸菌,因为他认为这种细菌帮助延长了保加利亚农民的寿命。但等他去世后,微生物学家克里斯蒂安·赫尔特(ChristianHerter)和亚瑟·艾萨克·肯德尔表明,梅奇尼科夫推崇的微生物并不长期存在于肠道中。只要你愿意,吃多少都可以,它们不会在肠道中久留。然而,尽管肯德尔推翻了梅奇尼科夫的想法,但却捍卫了其内涵。“人类肠道乳酸菌将被广泛用于矫正某种类型的肠道微生物疾病,”他写道,“科学研究最终会发现并指出成功治疗这些疾病的必需条件。”14相关研究人员的确已经往这个方向努力过。世纪30年代,日本微生物学家代田稔就曾经领导过一项研究,希望找到可以直达肠道,而不会中途被胃酸分解的强壮微生物。他最终瞄准了一株干酪乳杆菌(Lactobacilluscasei),令其在发酵的牛奶中生长,并于年制造了第一瓶养乐多。如今,养乐多每年的全球销量约为亿瓶。总体而言,益生菌已是价值高达数十亿美元的产业。相关产品不仅填满了我们的胃,也满足了我们对“天然”保健的渴望(即使其中的许多益生菌已经经历了好几代工业化的培养和驯化,申请了专利,发生了很大的改变)。在一些产品中,微生物在活的培养物中生长;在另一些产品中,它们会被冷冻、干燥,并包装成胶囊或小袋。一些产品只包含一种菌株,另一些则混合了不同的菌株。在相关产品的宣传文案中,它们被包装成可以促进消化、改善免疫系统、治疗各种疾病和消化系统疾病,以及其他身体机能的紊乱。即使是最浓缩的益生菌,每一小袋也只含有几千亿个细菌。这听起来很多,但是人体肠道拥有的细菌数量至少是其百倍以上。大口喝下一杯酸奶,就像补充了某种稀缺资源,也摄入了罕见菌群:这些产品中的细菌,并不在成年人的肠道菌群中扮演重要角色。它们大部分属于令梅奇尼科夫走上神坛的那种细菌类别:乳酸杆菌和双歧杆菌等制造乳酸的细菌。选择它们更多是出于实际考虑而非科学考量。它们容易培养,在发酵食品中已有发现,并且在经历了商业包装生产和消费者的胃之后还存活着。“但它们中的大多数从来没有出现在人类的肠道中,没有什么因素能够让它们在肠道内长期滞留。”杰夫·戈登说道。通过监测志愿者的肠道微生物组,戈登的团队证实了这一点。志愿者每天食用两次达能碧悠酸奶(Activia),持续7周。酸奶中的细菌既没有定植在志愿者的肠道内,也没有改变肠道中的微生物组成。这与赫尔特和肯德尔在20世纪20年代指出过的问题一样,马修·贝克尔和另一些研究者在蛙类的益生菌研究中也发现过类似的情况。它们就像一阵穿堂微风,吹过两扇对开的窗。16有些人认为这并不重要。但微风虽然穿堂过,仍然可能把沿途的东西吹得哗哗作响。戈登的团队看到了一些迹象:它们研究的酸奶可以让小鼠肠道中的微生物激活消化碳水化合物的基因,尽管只是暂时的效应。温迪·加勒特后来发现,乳酸乳球菌(Lactococcuslactis)的菌株可以在不停留,甚至不保持活性的情况下,发挥一些作用。它们进入老鼠的内脏后会裂开,死亡过程中会释放减少炎症的酶。它可能并不擅长定植,但不妨碍提供益处。理论上益生菌可以提供益处,但它们真的会这么做吗?“益生菌”一词本身就暗含着答案。世界卫生组织对该词的定义是,“活性微生物,如果施以足够数量,有助于提高宿主的健康状况”。根据定义,它们是促进健康的存在。乍一眼看,似乎有一长串研究都支持这一定义,但其中的许多研究是在分离的细胞或实验室动物身上开展的,益生菌与人的相关性尚不明了。在涉及真实人类的研究中,许多实验使用了少量志愿者,产生的结果可能有所偏倚或存在统计学上的侥幸。翻看一篇篇相关论文,想从中找出基础扎实的研究可是件苦差事。幸运的是,一个名为科克伦协作网(CochraneCollaboration)的非营利组织在专门开展这项工作。这个在业界声望颇高的协作组织,会使用系统化的方法核查医学研究。根据他们的判断,益生菌可以缩短传染性腹泻的发作期,并减少由抗生素治疗引起的腹泻风险。它们也可以拯救坏死性小肠结肠炎患者的生命,那是一种可怕的肠道疾病,会影响早产儿的健康。好了,益处列到这里为止。相比于社会上对益生菌的炒作,它的真实效果并没有那么神乎其神。现在仍然没有明确的证据表明益生菌能够帮助治疗过敏、哮喘、湿疹、肥胖、糖尿病、相对常见的炎性肠症类型、自闭症,或者任何其他与微生物组有关的疾病;目前尚不清楚,是否是微生物组的变化产生了这些有益效果。17监管机构已经注意到这些问题。从生产和收益角度考虑,益生菌通常被归类为食物而非药物。这意味着,厂商不会面临制药公司开发药物时必须跨越的监管障碍。但他们也不能说,这些产品能够预防或治疗特定的疾病,因为一旦这么描述就变成药物宣传了。他们一旦越线就会面临麻烦:年,美国联邦贸易委员会起诉达能,因为达能声称旗下的产品碧悠酸奶可以“缓解暂时的不规律排便”,或者帮助饮用者预防感冒和流感。这就是为什么与益生菌相关的话语往往模糊到几乎毫无意义,各大品牌提到“平衡消化系统”或“提高免疫防御力”时总是泛泛而谈。即使模糊到近乎空无一物的说法也会遭到反对。年,欧盟要求食品和营养品公司为包装上层出不穷的夸张描述提供科学依据。如果想宣传自家的产品能使人们更健康、体形更棒、更苗条,他们必须证明这些效果。他们试图提供过,但反馈的结果很糟糕。提交给欧盟科学顾问小组的几千种说法,90%以上都遭到了否定,包括所有与益生菌相关的说明。由于益生菌从字面上就暗示了有益于健康,所以,自年12月起,欧盟禁止食品包装和广告上出现该字样。益生菌的倡导者认为,此举忽视了其中基于扎实科学研究的产品,相当于直接给该领域泼了一盆冷水;而怀疑者认为欧盟做得对,这样能够迫使业界提高水准,并为本无事实根据的说法提供证据。18尽管过度炒作,但益生菌背后的理念仍然具有合理性。19鉴于细菌在我们体内发挥的所有重要作用,应该有办法通过服用或摄入正确的微生物来改善我们的健康。可能仅仅因为当前用错了菌株,它们只占我们生命中所涉及的微生物的极小部分,其能力只代表微生物组全部能力的冰山一角。我们在前面的章节中看到过更合适的微生物。喜欢黏液的阿氏嗜黏液菌,它们与降低肥胖和营养不良的风险相关。脆弱拟杆菌能够刺激免疫系统抵抗炎症。柔嫩梭菌可以抵抗炎症,炎性肠症患者的肠道中明显缺乏这种细菌,而在小鼠实验中,它们的出现可以逆转小鼠的相关症状。这些微生物可能组成了未来益生菌的一部分。它们的能力显著,引人注目,很适合我们的身体。它们中的一些本就大量存在于我们体内:健康成年人的每二十个肠道细菌中,就有一个是柔嫩梭菌。它们不是人体微生物中的无名之辈(比如乳酸菌),它们是人类肠道中的明星,在定植方面从不露怯。20不过还是会面临这个问题:有效的定植,往往意味着更大的风险和更高的回报。截至目前,益生菌的表现还没有越出安全范围,21但可能是因为它们并不能很好地在人体内立足。如果使用更常见的肠道定植者,那么会发生什么呢?通过动物研究可知,如果在动物的早期生命阶段提供一定剂量的微生物,那么对个体的生理、免疫,甚至行为都可能产生长期影响。正如我们所看到的,没有微生物生来有益,包括长期存在于人类微生物组中的幽门螺杆菌等,都既可以发挥积极作用,也可以产生消极影响。阿氏嗜黏液菌在许多研究中被称为救世主,但似乎在结肠癌患者体内更常见。这些微生物不能轻易投入使用,如果没有更透彻地理解它们是如何改变微生物组的,以及这些变化的长期后果,我们就不应该轻举妄动。就像之前说到的黄腿山蛙一样,细节很重要。在关于益生菌毁誉参半的消息中,也有成功的案例,其中最引人注目的研究发生在20世纪50年代的澳大利亚。当时,澳大利亚的国家科学机构正开始寻找一种热带植物,以养活数量不断增长的牛群。一种备选的中美洲灌木看起来很有希望胜任。它名为银合欢(Leucaena),容易生长,能够承受大量放牧压力,富含蛋白质。不幸的是,它也富含含羞草素,而这是一种毒素,会导致甲状腺肿大、脱发、发育不良,甚至偶尔会致死。科学家试图培育一种没有含羞草素的银合欢,但未能成功。一种完美的备选植物却有着致命缺陷。年,一位名叫雷蒙德·琼斯(RaymondJones)的官方科学家偶然发现了一种解决方案。他在夏威夷参加会议时,注意到一整排山羊正在大口大口地咀嚼银合欢,看起来完全没问题。他怀疑,这些山羊的第一个胃室——瘤胃中,携带了能够解毒的微生物。经过多次长途飞行,琼斯带回了数个装满山羊瘤胃液的热水瓶,甚至带回了几头活的山羊。他终于证明了自己的假设。20世纪80年代中期,他把耐受山羊的瘤胃细菌引入原本脆弱的澳大利亚家畜的胃中,然后发现被移植的家畜可以吃下银合欢而不受副作用折磨。原本吃下这些银合欢就会生病甚至死亡的动物,因为胃里的“外来”微生物而可以吞下大量富含营养的灌木,以创历史纪录的速度增重。琼斯所做的事,其原理并不复杂,就像蜂缘蝽从周围的环境中摄取了破坏杀虫剂的细菌,或沙漠林鼠从彼此那里获得了抵抗石炭酸灌木的微生物。琼斯为动物“装备”上新的微生物,以此来中和化学物质的威胁。他的同事最终识别出这种来自夏威夷山羊且能够降解含羞草素的细菌,并将其命名为穷氏互养菌(Synergistesjonesii)。截至年,农民已经能够买到这种“益生菌灌药”:一种工业制造的、含有微生物的瘤胃液混合物,用来喷洒在牲畜群中。农民从此可以无忧无虑地用银合欢喂养牲畜,可以说这种益生菌改变了北澳大利亚的农业。22为什么其他希望操纵微生物的人总是遇到各种挫折,而琼斯却成功了呢?也许有人会辩解,他试图修复的是一个简单的问题。他并没有试图治愈炎性肠症或是阻止一种致命真菌的传播,他只需解毒一种化学物质,所以很有机会发现能够胜任这项工作的单个微生物。但即便如此,也不能确保成功。以草酸盐为例。甜菜根、芦笋和大黄等食物中都含有这种化学物质。高浓度的草酸盐能够阻止人体吸收钙,并让钙元素凝结成一个硬块。这也是肾结石的一种形成方式。我们不能消化草酸盐,只有微生物才能。一种名为产甲酸草酸杆菌(Oxalobacterformigenes)的肠道细菌就非常擅长消化草酸盐,草酸是它唯一的能量来源。粗略一看,这与银合欢的消化问题相同:有一种化学物质(草酸盐),明确地引起了一个问题(肾结石),并且可以被一种微生物(产甲酸草酸杆菌)分解。如果你快得肾结石了,解决方案莫过于摄取这种益生菌。不幸的是,这样的益生菌虽然存在,却不是很有效。23为什么呢?有两种可能的答案为我们提供了宝贵的教训。首先,如果只给动物注入细菌,然后坐等其发挥作用,这远远不够。微生物是活物,它们需要食物。产甲酸草酸杆菌只吃草酸盐,而得了肾结石的人通常都吃不含草酸盐的东西。他们当然可以摄取这种细菌,但细菌会立即陷入饥饿状态。24澳大利亚农民的做法恰恰相反,他们被要求用银合欢喂养牲畜一周以上,再给它们灌食穷氏互养菌。这样,移植的细菌才有足够的食物可以消化。用于选择性滋养益生菌的物质又名益生元,它可以囊括草酸盐或银合欢,但通常指的是某种植物多糖,例如菊粉,可以提纯并作为补充剂包装售卖。25这些物质可以增加如柔嫩梭菌和阿氏菌这样的关键微生物的数量,还可以降低食欲、减少炎症。但它们是否需要被作为补充剂添加,那又是另一回事了。我们已经看到,我们吃下的东西会大大地改变肠道中的微生物,而洋葱、大蒜、洋蓟、菊苣、香蕉和其他食物都会提供丰富的益生元(如菊粉)。母乳中含有喂养微生物的多糖HMO,它们也被视为益生元,因为能够滋养婴儿双歧杆菌,以及其他专用的微生物。儿科医生马克·安德伍德(MarkUnderwood)认为它们可以帮助拯救一些最脆弱的生命:早产儿。安德伍德在加州大学戴维斯分校领导着一个新生儿重症监护病房,在那里,他的团队能够同时看护多达48个早产儿。最小的23周就出生了,最轻的体重只有大约克。他们通常是剖宫产出生的,先接受几个抗生素疗程,然后待在经过严格消毒的环境中。正常生产时会最初定植在人体内的微生物被剥夺了,这些孩子在成长过程中会发展出很奇怪的微生物组:正常的婴儿双歧杆菌含量较低,投机取巧的病原体以很高的含量填充了它们空出来的空间。这是一幅生态失调的景象,奇怪的微生物菌群通常会使早产儿面临患上致命肠道病症坏死性小肠结肠炎(necrotisingenterocolitis,简称NEC)的风险。许多医生试图通过给早产儿提供益生菌来预防NEC,也的确取得了一些成功。但是,安德伍德与布鲁斯·吉尔曼(BruceGerman)以及大卫·米尔斯等人讨论后认为,给婴儿注入婴儿双歧杆菌和母乳的混合物可以带来更好的效果。他表示:“给细菌提供的食物与细菌本身一样重要,食物能让细菌在非常恶劣的环境中定植并生长。”他已经开展了一项小规模的试验研究,结果显示,如果用正确的食物喂饱婴儿双歧杆菌,后者确实能够更有效地在早产儿的肠道内定植。26他现在正在开展一项规模更大的临床试验,以确定结合婴儿双歧杆菌和母乳益生元后有助于预防NEC。互养菌和产甲酸草酸杆菌教给我们的第二点启示是团队合作。没有细菌能在真空中存活。不同的物种通常会形成一张相互喂养、彼此支持的复杂网络。即使看起来仿佛是单个微生物就能解决的具体问题,但微生物的持续存活可能需要一个团队来支持。也许这就是为什么互养菌作为益生菌如此出色,因为瘤胃胃液中同时含有很多其他的微生物。也许这也是为什么产甲酸草酸杆菌作为益生菌的效果并不突出,因为没有合作伙伴。这个道理同样适用于其他微生物。你可以设想一个含有柔嫩梭菌的益生菌冲剂袋,它能够治愈炎性肠症;或者含有阿氏菌的药丸,它能够帮你减肥。但我不会干等着它们成为现实。因此,更聪明的生产益生菌的方法,是创造一个共同协作的微生物菌群。年,日本科学家本田贤也(KenyaHonda)发现了17种可以减少肠道炎症的梭菌菌株。根据他的研究,波士顿的韦丹塔生物科学公司(VedantaBioSciences)已经开发了一种治疗炎性肠症的多种微生物混合处方。27在本书英文版付梓的同时,这家公司应该已经开始把他们的新益生菌疗法投入临床试验。会管用吗?谁知道呢。但是,与使用任何孤立的菌株相比,用微生物的协作网络来调整微生物组肯定更有意义。毕竟,这是目前已知最成功的操纵微生物组的方法。年,明尼苏达大学胃肠病学家亚历山大·寇拉茨(AlexanderKhoruts)遇见了一名61岁的女性,暂且叫她丽贝卡(Rebecca)吧。在过去的8个月里,她遭受了腹泻的无情折磨,不得不穿着成年纸尿裤成天坐在轮椅上,体重降到了约25千克。这里的罪魁祸首是艰难梭菌,它们因为极强的抗药性而臭名昭著。抗生素能压制它一阵,但它经常变异、反弹,发展出抗药性。丽贝卡的情况便是如此:她的医生尝试了一种又一种药物,全都不管用。“她几乎绝望了。”寇拉茨回忆道。她已经几乎穷尽了所有选择。只有一项除外。寇拉茨回忆起他在医学院时,曾学过一种名为粪便微生物群移植(faecalmicrobiotatransplant,FMT)的技术。术如其名:医生获取捐赠者的粪便,把它移植到病人的肠道中,当然包括移植其中所有的微生物。显然,这可以治愈艰难梭菌的感染。这个想法听起来有点恶心和怪异,似乎不值得信任。但丽贝卡没有任何意见。她只是想——也急需——让病情得到好转。她同意尝试这种治疗方式。她的丈夫捐赠了一些粪便样本。寇拉茨把它们放在搅拌机中粉碎,然后通过结肠镜把一杯粪便浆输送到丽贝卡的肠道中。输送后不到一天,她就不再腹泻。一个月内,艰难梭菌彻底消失。这一次没有出现任何反弹。她被彻底、快速、持久地治愈了。虽然丽贝卡的案例听起来像是一桩逸事,但的确是这种治疗方法的原型。同样的理念出现在数百个涉及粪便移植的类似案例中:一个感染了艰难梭菌后很难治愈的病人,一个绝望的医生,还有一个神奇的恢复过程等。在一些病例中,医生从病人那里听来这种疗法。28安大略省金斯敦皇后大学的伊莱恩·彼得罗夫(ElainePetrof)就是其中之一。年,她正在治疗一个感染了艰难梭菌的病人,但一直没什么起色,直到病人的家属开始反复带着一小桶粪便出现。“我还在想他们是不是疯了,”她回忆道,“但是看到女患者病情恶化,做任何事情都十分无助的样子,我想也没什么可失去了吧?后来我们成功了,这种治疗手段确实有效。她从鬼门关走了回来,医院,状态很好,基本痊愈了。”粪便移植肯定有些恶心,无论就理念还是实际操作而言;毕竟最终要有人使用搅拌器搅拌便便。29但是,“患者无所谓恶不恶心,”彼得罗夫说道,“他们什么方式都愿意尝试。他们经常会打断我:好的没问题,在哪里签名确认?”的确,人类对粪便有着不同寻常的厌恶。其他许多动物都有食粪性,它们奋勇地吞食彼此的粪便和排泄物,从而获取微生物。通过这样的方式,大黄蜂和白蚁能够传播相应的细菌,并把微生物打造成整个群落的免疫系统,防御寄生虫和病原体的侵袭。30相比之下,粪便移植以一种相对怡人的方式提供类似的好处,毕竟不用真的吃下粪便。细菌可以通过结肠镜、灌肠或鼻管等方式,直接送入人的胃或肠。这种治疗方式的工作原理与益生菌相同,但不是只添加一个甚或是17个菌株,而是所有的微生物。这是一个生态系统的整体移植,试图使其完全取代一片发育贫瘠的区域,例如完全被蒲公英杂草覆盖的草坪。通过收集丽贝卡移植前后的粪便样本,寇拉茨为我们展示了这个过程。31移植之前,她的肠道菌群一团糟。寇拉茨表示,感染艰难梭菌后,她的肠道微生物组已经完全重组,创建了一个看起来像是不存在于自然界的东西,仿佛来自另一个星系。移植后,她与丈夫的肠道微生物组别无二致。他的肠道微生物占据了她的消化道,重置了整个环境。这几乎就像是做了一次器官移植,把病人因病受损的肠道微生物组完全“切除”,并用捐赠者健康的新微生物组替代。或者可以这么说,微生物组是唯一一种可以不经历手术就被替换掉的器官。粪便移植已经诞生了至少1,年。最早的记录可见于中国的一本急救医学手册(著于4世纪)。32欧洲人则花了更长时间理解:年,一位德国医生在一本书中推荐了这种技术,并起了一个绝伦的名字:海尔萨姆德雷克药房健康秽物药方(HeilsameDreck-Apotheke-SalutaryFilth-Pharmacy)。年,美国一位名叫本·艾斯曼(BenEiseman)的外科医生重新发现了它,但仅仅一年后就被万古霉素(van